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Why Hadoop and HBase? 
For Realtime Data? 





▪ MySQL is stable, but... 
▪ Not inherently distributed 

▪ Table size limits 

▪ Inflexible schema 

▪ Hadoop is scalable, but... 
▪ MapReduce is slow and difficult 

▪ Does not support random writes 

▪ Poor support for random reads 

Problems with existing stack 



▪ High-throughput, persistent key-value 

▪ Tokyo Cabinet 

▪ Large scale data warehousing 

▪  Hive/Hadoop 
▪ Photo Store 

▪  Haystack 

▪ Custom C++ servers for lots of other stuff 

Specialized solutions 



▪ Requirements for Facebook Messages 
▪ Massive datasets, with large subsets of cold data 

▪ Elasticity and high availability 

▪ Strong consistency within a datacenter 

▪ Fault isolation 

▪ Some non-requirements 
▪ Network partitions within a single datacenter 

▪ Active-active serving from multiple datacenters 

What do we need in a data store? 



▪ In early 2010, engineers at FB compared DBs 
▪ Apache Cassandra, Apache HBase, Sharded MySQL 

▪ Compared performance, scalability, and 
features 
▪ HBase gave excellent write performance, good reads 

▪ HBase already included many nice-to-have features 
▪  Atomic read-modify-write operations 

▪  Multiple shards per server 

▪  Bulk importing 

▪  MapReduce 

HBase satisfied our requirements 



HBase uses HDFS 
We get the benefits of HDFS as a storage 
system for free 

▪ Fault toleranceScalabilityChecksums fix 
corruptionsMapReduce 

▪ Fault isolation of disksHDFS battle tested at petabyte 
scale at Facebook 
Lots of existing operational experience 



▪ Originally part of Hadoop 
▪ HBase adds random read/write access to HDFS 

▪ Required some Hadoop changes for FB usage 
▪ File appends 

▪ HA NameNode 

▪ Read optimizations 

▪ Plus ZooKeeper! 

Apache HBase 



HBase System Overview 
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HBase in a nutshell 

▪ Sorted and column-oriented 

▪ High write throughputHorizontal scalability 
Automatic failoverRegions sharded 
dynamically 



Applications of HBase at 
Facebook 



Use Case 1 

Titan 
(Facebook Messages) 



SMS Messages email IM/Chat 

The New Facebook Messages 
 



▪ High write throughputEvery message, instant 
message, SMS, and e-mailSearch indexes for all of the 
above 

▪ Denormalized schema 
 

▪ A product at massive scale on day one 
▪ 6k messages a second 

▪ 50k instant messages a second 

▪ 300TB data growth/month compressed 
 

Facebook Messaging 
 



Typical Cell Layout 
 ▪ Multiple cells for messaging	


▪  20 servers/rack; 5 or more racks per cluster	


▪ Controllers (master/Zookeeper) spread across racks 
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Then click Namenode and backup namenode 
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Then HBase Master and Backup Master 
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High Write Throughput 
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Horizontal Scalability 
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Automatic Failover 
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No physical data copy because data is in HDFS 



Use Case 2 

Puma 
(Facebook Insights) 







▪ Realtime Data Pipeline 
▪ Utilize existing log aggregation pipeline (Scribe-

HDFS) 

▪ Extend low-latency capabilities of HDFS (Sync+PTail) 

▪ High-throughput writes (HBase) 

▪ Support for Realtime Aggregation 
▪ Utilize HBase atomic increments to maintain roll-ups 

▪ Complex HBase schemas for unique-user calculations 

▪ Store checkpoint information directly in HBase 

Puma 
 



▪ Map phase with PTail 
▪ Divide the input log stream into N shards 

▪ First version only supported random bucketing 

▪ Now supports application-level bucketing 

▪ Reduce phase with HBase 
▪ Every row+column in HBase is an output key 

▪ Aggregate key counts using atomic counters 

▪ Can also maintain per-key lists or other structures 

Puma as Realtime MapReduce 
 



▪ Realtime URL/Domain Insights 
▪ Domain owners can see deep analytics for their site 

▪ Clicks, Likes, Shares, Comments, Impressions 

▪ Detailed demographic breakdowns (anonymized) 

▪ Top URLs calculated per-domain and globally 
 

▪ Massive Throughput 
▪ Billions of URLs 

▪ > 1 Million counter increments per second 

Puma for Facebook Insights 
 







Use Case 3 

ODS 
(Facebook Internal Metrics) 



▪ Operational Data Store 
▪ System metrics (CPU, Memory, IO, Network) 

▪ Application metrics (Web, DB, Caches) 

▪ Facebook metrics (Usage, Revenue) 
▪  Easily graph this data over time 

▪  Supports complex aggregation, transformations, etc. 
 

▪ Difficult to scale with MySQL 

▪ Millions of unique time-series with billions of points 

▪ Irregular data growth patterns 

ODS 
 



Dynamic sharding of regions 
 

Region 

. . .  . . .  

server  
overloaded 



Future of HBase at Facebook 



User and Graph Data 
in HBase 



▪ Looking at HBase to augment MySQL 
▪ Only single row ACID from MySQL is used 

▪ DBs are always fronted by an in-memory cache 

▪ HBase is great at storing dictionaries and lists 
 

▪ Database tier size determined by IOPS 
▪ HBase does only sequential writes 

▪ Lower IOPs translate to lower cost  

▪ Larger tables on denser, cheaper, commodity nodes 

HBase for the important stuff 



▪ Facebook investing in Realtime Hadoop/HBase 
▪ Work of a large team of Facebook engineers 

▪ Close collaboration with open source developers 

 

▪ Much more detail in Realtime Hadoop paper 
▪ Technical details about changes to Hadoop and 

HBase 

▪ Operational experiences in production 

Conclusion 



Questions? 
jgray@fb.com 

dhruba@fb.com 


