

Realtime Apache Hadoop at Facebook

Jonathan Gray & Dhruba Borthakur
June 14, 2011 at SIGMOD, Athens

1 Why Apache Hadoop and HBase?

2 Quick Introduction to Apache HBase

3 Applications of HBase at Facebook

Agenda

Why Hadoop and HBase?
For Realtime Data?

▪ MySQL is stable, but...
▪ Not inherently distributed

▪ Table size limits

▪ Inflexible schema

▪ Hadoop is scalable, but...
▪ MapReduce is slow and difficult

▪ Does not support random writes

▪ Poor support for random reads

Problems with existing stack

▪ High-throughput, persistent key-value

▪ Tokyo Cabinet

▪ Large scale data warehousing

▪  Hive/Hadoop
▪ Photo Store

▪  Haystack

▪ Custom C++ servers for lots of other stuff

Specialized solutions

▪ Requirements for Facebook Messages
▪ Massive datasets, with large subsets of cold data

▪ Elasticity and high availability

▪ Strong consistency within a datacenter

▪ Fault isolation

▪ Some non-requirements
▪ Network partitions within a single datacenter

▪ Active-active serving from multiple datacenters

What do we need in a data store?

▪ In early 2010, engineers at FB compared DBs
▪ Apache Cassandra, Apache HBase, Sharded MySQL

▪ Compared performance, scalability, and
features
▪ HBase gave excellent write performance, good reads

▪ HBase already included many nice-to-have features
▪  Atomic read-modify-write operations

▪  Multiple shards per server

▪  Bulk importing

▪  MapReduce

HBase satisfied our requirements

HBase uses HDFS
We get the benefits of HDFS as a storage
system for free

▪ Fault toleranceScalabilityChecksums fix
corruptionsMapReduce

▪ Fault isolation of disksHDFS battle tested at petabyte
scale at Facebook
Lots of existing operational experience

▪ Originally part of Hadoop
▪ HBase adds random read/write access to HDFS

▪ Required some Hadoop changes for FB usage
▪ File appends

▪ HA NameNode

▪ Read optimizations

▪ Plus ZooKeeper!

Apache HBase

HBase System Overview

. . .
HBASE

. . .

Database Layer

Storage
Layer

Master Backup Master

Region Server Region Server Region Server

Namenode Secondary Namenode

Datanode

ZK Peer

ZK Peer

Coordination
Service

Zookeeper Quorum

Datanode Datanode

HDFS

. . .

HBase in a nutshell

▪ Sorted and column-oriented

▪ High write throughputHorizontal scalability
Automatic failoverRegions sharded
dynamically

Applications of HBase at
Facebook

Use Case 1

Titan
(Facebook Messages)

SMS Messages email IM/Chat

The New Facebook Messages

▪ High write throughputEvery message, instant
message, SMS, and e-mailSearch indexes for all of the
above

▪ Denormalized schema

▪ A product at massive scale on day one
▪ 6k messages a second

▪ 50k instant messages a second

▪ 300TB data growth/month compressed

Facebook Messaging

Typical Cell Layout
 ▪ Multiple cells for messaging	

▪  20 servers/rack; 5 or more racks per cluster	

▪ Controllers (master/Zookeeper) spread across racks

Rack #2 Rack #3 Rack #4 Rack #5 Rack #1

Region Server	

Data Node	

Task Tracker

Region Server	

Data Node	

Task Tracker

Region Server	

Data Node	

Task Tracker

Region Server	

Data Node	

Task Tracker

Region Server	

Data Node	

Task Tracker

 19x... 19x... 19x... 19x... 19x...
Region Server	

Data Node	

Task Tracker

Region Server	

Data Node	

Task Tracker

Region Server	

Data Node	

Task Tracker

Region Server	

Data Node	

Task Tracker

Region Server	

Data Node	

Task Tracker

blue box animates in first with just Zookeeper	

Then click Namenode and backup namenode
(two on the left)	

Then HBase Master and Backup Master
animate in on click (two on the right)	

Then Job Tracker animates in on click	

Then the first green box animates in with all of
the text	

Then everything else appears on click	

_Outside shell and 	

label can stand at origin

ZooKeeper ZooKeeper ZooKeeper ZooKeeper ZooKeeper
Backup NameNode

HDFS NameNode

HBase Master

Backup Master

Job Tracker

High Write Throughput

Key val

Key val

Key val

Key val

. . .

. . .

Key val

Key val

Key val

Key val

Key val

. . .

Write
Key Value

Key val Sequential
write

Commit Log(in HDFS)

Sequential
write

Memstore (in memory)

 Slide	
 #50:	
 already	
 have	
 the	
 grey	
 “Key	
 val”	
 	
 in	
 box	
 2	
 (middle	
 box)	

showing	
 up	
 by	
 default	

	

when	
 does	
 middle	
 box	
 pop	
 out	

Sorted in memory

Horizontal Scalability

Region

.

on click bottom one of first two on
the left move over to be added to
the third box

two clicks one by one

Automatic Failover
 HBase client

Find new
server from
META

server
died

No physical data copy because data is in HDFS

Use Case 2

Puma
(Facebook Insights)

▪ Realtime Data Pipeline
▪ Utilize existing log aggregation pipeline (Scribe-

HDFS)

▪ Extend low-latency capabilities of HDFS (Sync+PTail)

▪ High-throughput writes (HBase)

▪ Support for Realtime Aggregation
▪ Utilize HBase atomic increments to maintain roll-ups

▪ Complex HBase schemas for unique-user calculations

▪ Store checkpoint information directly in HBase

Puma

▪ Map phase with PTail
▪ Divide the input log stream into N shards

▪ First version only supported random bucketing

▪ Now supports application-level bucketing

▪ Reduce phase with HBase
▪ Every row+column in HBase is an output key

▪ Aggregate key counts using atomic counters

▪ Can also maintain per-key lists or other structures

Puma as Realtime MapReduce

▪ Realtime URL/Domain Insights
▪ Domain owners can see deep analytics for their site

▪ Clicks, Likes, Shares, Comments, Impressions

▪ Detailed demographic breakdowns (anonymized)

▪ Top URLs calculated per-domain and globally

▪ Massive Throughput
▪ Billions of URLs

▪ > 1 Million counter increments per second

Puma for Facebook Insights

Use Case 3

ODS
(Facebook Internal Metrics)

▪ Operational Data Store
▪ System metrics (CPU, Memory, IO, Network)

▪ Application metrics (Web, DB, Caches)

▪ Facebook metrics (Usage, Revenue)
▪  Easily graph this data over time

▪  Supports complex aggregation, transformations, etc.

▪ Difficult to scale with MySQL

▪ Millions of unique time-series with billions of points

▪ Irregular data growth patterns

ODS

Dynamic sharding of regions

Region

.

server
overloaded

Future of HBase at Facebook

User and Graph Data
in HBase

▪ Looking at HBase to augment MySQL
▪ Only single row ACID from MySQL is used

▪ DBs are always fronted by an in-memory cache

▪ HBase is great at storing dictionaries and lists

▪ Database tier size determined by IOPS
▪ HBase does only sequential writes

▪ Lower IOPs translate to lower cost

▪ Larger tables on denser, cheaper, commodity nodes

HBase for the important stuff

▪ Facebook investing in Realtime Hadoop/HBase
▪ Work of a large team of Facebook engineers

▪ Close collaboration with open source developers

▪ Much more detail in Realtime Hadoop paper
▪ Technical details about changes to Hadoop and

HBase

▪ Operational experiences in production

Conclusion

Questions?
jgray@fb.com

dhruba@fb.com

