
Hadoop Architecture and its
Usage at Facebook

Dhruba Borthakur
Project Lead, Apache Hadoop Distributed File System
dhruba@apache.org
Presented at Microsoft Research, Seattle
October 16, 2009

Outline

  Introduction
  Architecture of Hadoop Distributed File System
  Hadoop Usage at Facebook

Who Am I?

  Hadoop FileSystem (HDFS) Project Lead
–  Core contributor since Hadoop’s infancy

  Facebook (Hadoop, Hive, Scribe)
  Yahoo! (Hadoop in Yahoo Search)
  Veritas (San Point Direct, Veritas File System)
  IBM Transarc (Andrew File System)
  UW Computer Science Alumni (Condor Project)

 A Confluence of Trends

File System

Queryable Database

Archival Store

HADOOP: A Massively Scalable Queryable Store and Archive

Flexible Schema

Never Delete Data

Open Data format

Fault Tolerance

Hadoop, Why?

  Need to process Multi Petabyte Datasets
  Data may not have strict schema
  Expensive to build reliability in each application.
  Nodes fail every day

 – Failure is expected, rather than exceptional.
 – The number of nodes in a cluster is not constant.

  Need common infrastructure
 – Efficient, reliable, Open Source Apache License

Is Hadoop a Database?

  Hadoop triggered upheaval in Database Research
–  “A giant step backward in the programming paradigm”, Dewitt et el
–  “DBMS performance outshines Hadoop” – Stonebraker, Dewitt, SIGMOD

2009

  Parallel Databases
–  A few scales to low hundreds of nodes and about 5 PB
–  Primary design goal is “performance”
–  Requires homogeneous hardware
–  Anomalous behavior is not well tolerated:

  A slow network can cause serious performance degradation
  Most queries fail when one node fails

  Scalability and Fault Tolerance: Hadoop to the rescue!

Hadoop History

  Dec 2004 – Google GFS paper published
  July 2005 – Nutch uses MapReduce
  Feb 2006 – Starts as a Lucene subproject
  Apr 2007 – Yahoo! on 1000-node cluster
  Jan 2008 – An Apache Top Level Project
  Jul 2008 – A 4000 node test cluster
  May 2009 – Hadoop sorts Petabyte in 17 hours

Who uses Hadoop?

  Amazon/A9
  Facebook
  Google
  IBM
  Joost
  Last.fm
  New York Times
  PowerSet
  Veoh
  Yahoo!

What is Hadoop used for?

  Search
–  Yahoo, Amazon, Zvents

  Log processing
–  Facebook, Yahoo, ContextWeb. Joost, Last.fm

  Recommendation Systems
–  Facebook

  Data Warehouse
–  Facebook, AOL

  Video and Image Analysis
–  New York Times, Eyealike

Public Hadoop Clouds

  Hadoop Map-reduce on Amazon EC2
–  http://wiki.apache.org/hadoop/AmazonEC2

  IBM Blue Cloud
–  Partnering with Google to offer web-scale infrastructure

  Global Cloud Computing Testbed
–  Joint effort by Yahoo, HP and Intel
–  http://www.opencloudconsortium.org/testbed.html

Commodity Hardware

Typically in 2 level architecture
– Nodes are commodity PCs
– 30-40 nodes/rack
– Uplink from rack is 3-4 gigabit
– Rack-internal is 1 gigabit

Goals of HDFS

  Very Large Distributed File System
 – 10K nodes, 100 million files, 10 - 100 PB

  Assumes Commodity Hardware
 – Files are replicated to handle hardware failure
 – Detect failures and recovers from them

  Optimized for Batch Processing
 – Data locations exposed so that computations can move to
where data resides

 – Provides very high aggregate bandwidth
  User Space, runs on heterogeneous OS

Secondary NameNode

Client

HDFS Architecture

NameNode

DataNodes

 3. Read/write data

Cluster Membership

NameNode : Maps a file to a file-id and list of DataNodes
DataNode : Maps a block-id to a physical location on disk
SecondaryNameNode: Periodic merge of Transaction log

Distributed File System

  Single Namespace for entire cluster
  Data Coherency

 – Write-once-read-many access model
 – Client can only append to existing files

  Files are broken up into blocks
 – Typically 128 MB block size
 – Each block replicated on multiple DataNodes

  Intelligent Client
 – Client can find location of blocks
 – Client accesses data directly from DataNode

NameNode Metadata

  Meta-data in Memory
 – The entire metadata is in main memory
 – No demand paging of meta-data

  Types of Metadata
 – List of files
 – List of Blocks for each file
 – List of DataNodes for each block
 – File attributes, e.g creation time, replication factor

  A Transaction Log
 – Records file creations, file deletions. etc

DataNode

  A Block Server
 – Stores data in the local file system (e.g. ext3)
 – Stores meta-data of a block (e.g. CRC32)
 – Serves data and meta-data to Clients
 - Periodic validation of checksums

  Block Report
 – Periodically sends a report of all existing blocks to the
NameNode

  Facilitates Pipelining of Data
 – Forwards data to other specified DataNodes

Block Placement

  Current Strategy
 -- One replica on local node
 -- Second replica on a remote rack
 -- Third replica on same remote rack
 -- Additional replicas are randomly placed

  Clients read from nearest replica
  Pluggable policy for placing block replicas

–  Co-locate datasets that are often used together
–  http://hadoopblog.blogspot.com/2009/09/hdfs-block-replica-placement-in-

your.html

Data Pipelining

  Client writes block to the first DataNode
  The first DataNode forwards the data to the next DataNode

in the Pipeline, and so on
  When all replicas are written, the Client moves on to write

the next block in file

NameNode Failure

  A Single Point of Failure
  Transaction Log stored in multiple directories

 – A directory on the local file system
 – A directory on a remote file system (NFS/CIFS)

  Need to develop a real HA solution
–  work in progress: BackupNode

Rebalancer

  Goal: % disk full on DataNodes should be similar
–  Usually run when new DataNodes are added
–  Cluster is online when Rebalancer is active
–  Rebalancer is throttled to avoid network congestion
–  Command line tool

  Disadvantages
–  Does not rebalance based on access patterns or load
–  No support for automatic handling of hotspots of data

Hadoop Map/Reduce

  The Map-Reduce programming model
 – Distributed processing of large data sets
 – Pluggable user code runs in generic framework

  Common design pattern in data processing
 cat * | grep | sort | unique -c | cat > file

 input | map | shuffle | reduce | output
  Natural for:

 – Log processing
 – Web search indexing
 – Ad-hoc queries

Map/Reduce and Storage

  Clean API between Map/Reduce and HDFS
  Hadoop Map/Reduce and Storage Stacks

–  Typical installations store data in HDFS
–  Hadoop Map/Reduce can run on data in MySQL
–  Demonstrated to run on IBM GPFS

  External Schedulers and HDFS Storage
–  Condor Job Scheduler on HDFS
–  Dryad-style DAG Scheduler on HDFS

  Current state of affairs with Hadoop Scheduler
–  Places computation close to data
–  FIFO and Fair Share scheduler

  Work in progress
–  Resource aware (cpu, memory, network)
–  Support for MPI workloads
–  Isolation of one job from another

Job Scheduling

Hadoop @ Facebook

Who generates this data?

  Lots of data is generated on Facebook
–  300+ million active users
–  30 million users update their statuses at least once each

day
–  More than 1 billion photos uploaded each month
–  More than 10 million videos uploaded each month
–  More than 1 billion pieces of content (web links, news

stories, blog posts, notes, photos, etc.) shared each
week

Data Usage

  Statistics per day:
–  4 TB of compressed new data added per day
–  135TB of compressed data scanned per day
–  7500+ Hive jobs on production cluster per day
–  80K compute hours per day

  Barrier to entry is significantly reduced:
–  New engineers go though a Hive training session
–  ~200 people/month run jobs on Hadoop/Hive
–  Analysts (non-engineers) use Hadoop through Hive

Where is this data stored?

  Hadoop/Hive Warehouse
–  4800 cores, 5.5 PetaBytes
–  12 TB per node
–  Two level network topology

  1 Gbit/sec from node to rack switch
  4 Gbit/sec to top level rack switch

 Data Flow into Hadoop Cloud

Web Servers 
Scribe MidTier 

Network 
Storage 
and 
Servers 

Hadoop Hive Warehouse Oracle RAC  MySQL 

Hadoop Scribe: Avoid Costly Filers

Web Servers 

Scribe Writers 

RealBme 
Hadoop 
Cluster 

Hadoop Hive Warehouse Oracle RAC  MySQL 

Scribe MidTier 

http://hadoopblog.blogspot.com/2009/06/hdfs-scribe-integration.html

HDFS Raid

  Start the same: triplicate
every data block

  Background encoding
–  Combine third replica of

blocks from a single file to
create parity block

–  Remove third replica
–  Apache Hadoop 0.22 release

  DiskReduce from CMU
–  Garth Gibson research

A

A B

B

A+B+C

A B

http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html

C

C

C

A file with three blocks A, B and C

Cheap NAS 

Hadoop Archival Cluster 

Hadoop Archive Node 

NFS 

Hive Query 

Hadoop Warehouse 

hEp://issues.apache.org/jira/browse/HDFS‐220 

Archival: Move old data to cheap storage

Dynamic-size MapReduce Clusters

  Why multiple compute clouds in Facebook?
–  Users unaware of resources needed by job
–  Absence of flexible Job Isolation techniques
–  Provide adequate SLAs for jobs

  Dynamically move nodes between clusters
–  Based on load and configured policies
–  Apache Jira MAPREDUCE-1044

Resource Aware Scheduling (Fair Share
Scheduler)

  We use the Hadoop Fair Share Scheduler
–  Scheduler unaware of memory needed by job

  Memory and CPU aware scheduling
–  RealTime gathering of CPU and memory usage
–  Scheduler analyzes memory consumption in realtime
–  Scheduler fair-shares memory usage among jobs
–  Slot-less scheduling of tasks (in future)
–  Apache Jira MAPREDUCE-961

Hive – Data Warehouse

  Efficient SQL to Map-Reduce Compiler

  Mar 2008: Started at Facebook
  May 2009: Release 0.3.0 available
  Now: Preparing for release 0.4.0

  Countable for 95%+ of Hadoop jobs @ Facebook
  Used by ~200 engineers and business analysts at Facebook

every month

Hive Architecture

HDFS Map Reduce Web UI + Hive CLI + JDBC/
ODBC

Browse, Query, DDL

MetaStore

Thrift API

Hive QL

Parser

Planner

Optimizer

Execution

SerDe

CSV
Thrift
Regex

UDF/UDAF

substr
sum

average

FileFormats

TextFile
SequenceFile

RCFile

User-defined
Map-reduce Scripts

File Formats

  TextFile:
–  Easy for other applications to write/read
–  Gzip text files are not splittable

  SequenceFile:
–  Only hadoop can read it
–  Support splittable compression

  RCFile: Block-based columnar storage
–  Use SequenceFile block format
–  Columnar storage inside a block
–  25% smaller compressed size
–  On-par or better query performance depending on the query

SerDe

  Serialization/Deserialization
  Row Format

–  CSV (LazySimpleSerDe)
–  Thrift (ThriftSerDe)
–  Regex (RegexSerDe)
–  Hive Binary Format (LazyBinarySerDe)

  LazySimpleSerDe and LazyBinarySerDe
–  Deserialize the field when needed
–  Reuse objects across different rows
–  Text and Binary format

Useful Links

  HDFS Design:
–  http://hadoop.apache.org/core/docs/current/hdfs_design.html

  Hadoop API:
–  http://hadoop.apache.org/core/docs/current/api/

  My Hadoop Blog:
–  http://hadoopblog.blogspot.com/

