Hadoop and its Usage at Facebook

Dhruba Borthakur dhruba@apache.org,
June 22rd, 2009

Who Am I?

- Hadoop Developer
 - Core contributor since Hadoop's infancy
 - Focussed on Hadoop Distributed File System
- Facebook (Hadoop)
- Yahoo! (Hadoop)
- Veritas (San Point Direct, VxFS)
- IBM Transarc (Andrew File System)

Hadoop, Why?

- Need to process huge datasets on large clusters of computers
- Very expensive to build reliability into each application.
- Nodes fail every day
 - Failure is expected, rather than exceptional.
 - The number of nodes in a cluster is not constant.
- Need common infrastructure
 - Efficient, reliable, easy to use
 - Open Source, Apache License

Hadoop History

- Dec 2004 Google GFS paper published
- July 2005 Nutch uses MapReduce
- Feb 2006 Becomes Lucene subproject
- Apr 2007 Yahoo! on 1000-node cluster
- Jan 2008 An Apache Top Level Project
- Feb 2008 Yahoo! production search index
- Nov 2008 SQL query language called Hive

Who uses Hadoop?

- Amazon/A9
- Facebook
- Google
- IBM : Blue Cloud?
- Joost
- Last.fm
- New York Times
- PowerSet
- Veoh
- Yahoo!

Commodity Hardware

Typically in 2 level architecture

- Nodes are commodity PCs
- 30-40 nodes/rack
- Uplink from rack is 3-4 gigabit
- Rack-internal is 1 gigabit

Goals of HDFS

- Very Large Distributed File System
 - 10K nodes, 100 million files, 10 PB
- Assumes Commodity Hardware
 - Files are replicated to handle hardware failure
 - Detect failures and recovers from them
- Optimized for Batch Processing
 - Data locations exposed so that computations can move to where data resides
 - Provides very high aggregate bandwidth

Distributed File System

- Single Namespace for entire cluster
- Data Coherency
 - Write-once-read-many access model
 - Client can only append to existing files
- Files are broken up into blocks
 - Typically 128 MB block size
 - Each block replicated on multiple DataNodes
- Intelligent Client
 - Client can find location of blocks
 - Client accesses data directly from DataNode

Hadoop Map/Reduce

- The Map-Reduce programming model
 - Framework for distributed processing of large data sets
 - Pluggable user code runs in generic framework
- Common design pattern in data processing cat * | grep | sort | unique -c | cat > file input | map | shuffle | reduce | output
- Natural for:
 - Log processing
 - Web search indexing
 - Ad-hoc queries

Hadoop/Hive at Facebook

- Cross functional team of 11 members
 - 5 people working in Hive development
 - 2 people on Hadoop development
 - 2 people on Data Pipelines and Oracle
 Data Mart
 - 1 Production Operations

Why Hive?

- Large installed base of SQL users
- Analytics SQL queries translate well to map-reduce
- Files are insufficient data management abstractions
 - Need Tables, schemas, partitions, indices
- Scalability of Hadoop

Why Hive?

```
hive> select key, count(1) from kv1 where key > 100 group by key;
```

VS

```
$ cat > /tmp/reducer.sh
uniq -c | awk '{print $2"\t"$1}`
$ cat > /tmp/map.sh
awk -F '\001' '{if($1 > 100) print $1}`
$ bin/hadoop jar contrib/hadoop-0.19.2-dev-streaming.jar -input /
    user/hive/warehouse/kv1 -mapper map.sh -file /tmp/reducer.sh
-file /tm;map.sh -reducer reducer.sh -output /tmp/largekey -
    numReducerTasks 1
```

Hive Query Language

- Basic SQL
 - From clause subquery
 - Join
 - Multi table insert
 - Multi group-by
 - Sampling
- Extensibility
 - Pluggable map-reduce scripts

Who generates this data?

- Lots of data is generated on Facebook
 - 200 million active users
 - 20 million users update their statuses at least once each day
 - More than 850 million photos uploaded to the site each month
 - More than 8 million videos uploaded each month
 - More than 1 billion pieces of content (web links, news stories, blog posts, notes, photos, etc.)
 shared each week

Where do we store this data?

- Hadoop/Hive Warehouse
 - 4800 cores, 2 PetaBytes total size
- Hadoop Archival Store
 - -200 TB

Rate of Data Growth

Hadoop File System Size (Terabytes) by Date

Data Flow

Data Usage

- Statistics per day:
 - 4 TB of compressed new data added per day
 - 55TB of compressed data scanned per day
 - 3200+ Hive jobs on production cluster per day
 - 80M compute minutes per day
- Barrier to entry is significantly reduced:
 - New engineers go though a Hive training session
 - 140+ people run jobs on Hadoop/Hive jobs
 - Analysts (non-engineers) use Hadoop through Hive

Hadoop Scribe: Avoid Costly Filers

Archival: Move old data to cheap storage

Cluster Usage Dashboard

- History logs are fed into a mySQL database
- A Dashboard displays cluster usage statistics from the database
- Displays cluster utilization, growth rates of cluster usage, etc
- HADOOP-3708

Cluster Usage Dashboard

Hive WebUI

HiPal: an Online Tool for Querying Hive/Hadoop Data Warehouse

+ Learn More about HiPal + Why am I on dev127?

Questions?

