Petabyte Scale Data at Facebook

Dhruba Borthakur,
Engineer at Facebook,
SIGMOD, New York, June 2013
Agenda

1. Types of Data
2. Data Model and API for Facebook Graph Data
3. SLTP (Semi-OLTP) and Analytics data
4. Immutable data store for photos, videos, etc
5. Why Hive?
Four major types of storage systems

- Online Transaction Processing Databases (OLTP)
 - The Facebook Social Graph

- Semi-online Lightweight Transaction Processing Databases (SLTP)
 - Facebook Messages and Facebook Time Series

- Immutable DataStore
 - Photos, videos, etc

- Analytics DataStore
 - Data Warehouse, Logs storage
<table>
<thead>
<tr>
<th>Database Type</th>
<th>Total Size</th>
<th>Technology</th>
<th>Bottlenecks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook Graph</td>
<td>Single digit pb</td>
<td>MySQL and TAO</td>
<td>Random read IOPS</td>
</tr>
<tr>
<td>Facebook Messages and Time Series Data</td>
<td>Tens of pb</td>
<td>HBase and HDFS</td>
<td>Write IOPS and storage capacity</td>
</tr>
<tr>
<td>Facebook Photos</td>
<td>Hundreds of pb</td>
<td>Haystack</td>
<td>storage capacity</td>
</tr>
<tr>
<td>Data Warehouse</td>
<td>Hundreds of pb</td>
<td>Hive, HDFS and Hadoop</td>
<td>storage capacity</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Query Latency</td>
<td>Consistency</td>
<td>Durability</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Facebook Graph</td>
<td>< few milliseconds</td>
<td>quickly consistent across data centers</td>
<td>No data loss</td>
</tr>
<tr>
<td>Facebook Messages and Time Series Data</td>
<td>< 100 millisec</td>
<td>consistent within a data center</td>
<td>No data loss</td>
</tr>
<tr>
<td>Facebook Photos</td>
<td>< 100 millisec</td>
<td>immutable</td>
<td>No data loss</td>
</tr>
<tr>
<td>Data Warehouse</td>
<td>< 1 min</td>
<td>not consistent across data centers</td>
<td>No silent data loss</td>
</tr>
</tbody>
</table>
Facebook Graph: Objects and Associations
Objects & Associations

Data model

name: Barack Obama
birthday: 08/04/1961
website: http://...
verified: 1

6205972929 (story)
8636146 (user)
604191769 (user)
18429207554 (page)

likes
liked by
fan
admin
friend
friend

Facebook Social Graph: TAO and MySQL

An OLTP workload:

- Uneven read heavy workload
- Huge working set with creation-time locality
- Highly interconnected data
- Constantly evolving
- As consistent as possible
Data model

Objects & Associations

- Object -> unique 64 bit ID plus a typed dictionary
 - (id) -> (otype, (key -> value)*)
 - ID 6815841748 -> {'type': page, 'name': "Barack Obama", ...}

- Association -> typed directed edge between 2 IDs
 - (id1, atype, id2) -> (time, (key -> value)*)
 - (8636146, RSVP, 130855887032173) -> (1327719600, {'response': 'YES'})

- Association lists
 - (id1, atype) -> all assocs with given id1, atype in desc order by time
Architectures

Sharding

- Object ids and Assoc id1s are mapped to shard ids
Workload

- Read-heavy workload
 - Significant range queries

- LinkBench benchmark SIGMOD 2013 paper
 - http://www.github.com/facebook/linkbench
 - Real distribution of associations and access patterns
Messages & Time Series Database
SLTP workload
Facebook Messages

- Messages
- Chats
- Emails
- SMS
Why we chose HBase

- High write throughput
- Horizontal scalability
- Automatic Failover
- Strong consistency within a data center

Benefits of HDFS: Fault tolerant, scalable, Map-Reduce toolset,

Why is this SLTP?
- Semi-online: Queries run even if part of the database is offline
- Lightweight Transactions: single row transactions
- Storage capacity bound rather than iops or cpu bound
What we store in HBase

- Small messages
- Message metadata (thread/message indices)
- Search index
- Large attachments stored in Haystack (photo store)
Size and scale of Messages Database

- 6 Billion messages/day
- 74 Billion operations/day
- At peak: 1.5 million operations/sec
- 55% read, 45% write operations
- Average write operation inserts 16 records
- All data is lzo compressed
- Growing at 8 TB/day
Haystack: The Photo Store
Facebook Photo DataStore

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Size</td>
<td>15 billion photos</td>
<td>hundred petabytes</td>
</tr>
<tr>
<td></td>
<td>1.5 Petabyte</td>
<td></td>
</tr>
<tr>
<td>Upload Rate</td>
<td>30 million photos/day</td>
<td>300 million photos/day</td>
</tr>
<tr>
<td></td>
<td>3 TB/day</td>
<td>30 TB/day</td>
</tr>
<tr>
<td>Serving Rate</td>
<td>555K images/sec</td>
<td></td>
</tr>
</tbody>
</table>
Haystack based Design

- Haystack Directory
- Web Server
- Browser
- Haystack Store
- Haystack Cache
- CDN
Hive Analytics Warehouse
Life of a photo tag in Hadoop/Hive storage

- **Periodic Analysis (HIVE)**
 - nocron
 - Daily report on count of photo tags by country (1day)

- **Adhoc Analysis (HIVE)**
 - hipal
 - Count photos tagged by females age 20-25 yesterday

- **Hive Warehouse**
 - copier/loader

- **Scrapes**
 - User info reaches Warehouse (1day)

- **Realtime Analytics (HBASE)**
 - puma
 - Count users tagging photos in the last hour (1min)

- **Scribe Log Storage (HDFS)**
 - Log line reaches Scribeh (10s)

- **MySQL DB**
 - Log line reaches warehouse (15 min)

- **www.facebook.com**
 - Log line generated: `<user_id, photo_id>`
Analytics Data Growth (last 4 years)

<table>
<thead>
<tr>
<th></th>
<th>Facebook Users</th>
<th>Queries/Day</th>
<th>Scribe Data/Day</th>
<th>Nodes in warehouse</th>
<th>Size (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>14X</td>
<td>60X</td>
<td>250X</td>
<td>260X</td>
<td>2500X</td>
</tr>
</tbody>
</table>
Why use Hive instead of a Parallel DBMS?

- Stonebraker/DeWitt from the DBMS community:
 - Quote “major step backwards”
 - Published benchmark results which show that Hive is not as performant as a traditional DBMS

What is BigData? Prospecting for Gold..

- “Finding Gold in the wild-west”
- A platform for huge data-experiments
- A majority of queries are searching for a single gold nugget
- Great advantage in keeping all data in one queryable system
- No structure to data, specify structure at query time
How to measure performance

- Traditional database systems:
 - Latency of queries

- Big Data systems:
 - How much data can we store and query? (the ‘Big’ in BigData)
 - How much data can we query in parallel?
 - What is the value of this system?
Measure Cost of Storage

- Distributed Network Encoding of data
 - Encoding is better than replication
 - Use algorithms that minimize network transfer for data repair

- Tradeoff cpu for storage & network
 - Remember lineage of data, e.g. record query that created it
 - If data is not accessed for sometime, delete it
 - If a query occurs, recompute the data using query lineage
Measure Network Encoding

Start the same: triplicate every data block (storage overhead=3)

Background encoding

- Combine third replica of blocks from a single file to create parity block
- Remove third replica (storage overhead = 2)
- Reed Solomon encoding for much older files (storage overhead = 1.4)

Measuring Data Discovery: Crowd Sourcing

- There are 50K tables in a single warehouse
- Users are Data Administrators themselves
- Questions about a table are directed to users of that table
- Automatic query lineage tools
Fault Tolerance and Elasticity

- Commodity machines
- Faults are the norm
- Anomalous behavior rather than complete failures
 - 10% of machines are always 50% slower than the others
Measuring Fault Tolerance and Elasticity

- Fault tolerance is a must
 - Continuously kill machines during benchmarking
 - Slow down 10% of machine during benchmark
- Elasticity is necessary
 - Add/remove new machines during benchmarking
Why use Hive instead of a Parallel DBMS?

- Stonebraker/DeWitt from the DBMS community:
 - Quote “Hadoop is a major step backwards”
 - Published benchmark results which show that Hadoop/Hive is not as performant as a traditional DBMS
 - Hive query is 50 times slower than DBMS query

- Conclusion: Facebook’s 4000 node cluster (100PB) can be replaced by a 20 node DBMS cluster

- What is wrong with the above conclusion?
Hive/Hadoop instead of Parallel DBMS?

- Dr Stonebraker’s proposal would put 5 PB per node on DBMS
 - What will be the io throughput of that system? **Abysmal**
 - How many concurrent queries can it support? **Certainly not 100K concurrent clients**
- Query latency is not the only metric to make a conclusion
- Hive/Hadoop is very very slow
 - Hive/Hadoop needs to be fixed to reduce query latency
- But an existing DBMS cannot replace Hive/Hadoop
Presto: A Distributed SQL Engine

- Low Latency, interactive usage
- Bypasses Map/Reduce
- Processes Hive/Hadoop data but has pluggable backends
- Will be open sourced soon

Scale
- 30K daily queries, 300 TB scanned daily
- Growing fast
Future Challenges
New trends in storage software

- Analytics Data
 - Streaming queries, low latency queries
 - Cold Storage – very low $/GB

- OLTP Data
 - One size does not fit all: need specialized solutions
 - disk, flash, disk+flash
 - write heavy, point lookups, range scans
 - iops bound, storage bandwidth bound, memory bound
Questions?

dhruba@fb.com

http://hadoopblog.blogspot.com/