
Petabyte Scale Data at Facebook

Dhruba Borthakur ,
Engineer at Facebook,
SIGMOD, New York, June 2013

1 Types of Data

2 Data Model and API for Facebook Graph Data

3 SLTP (Semi-OLTP) and Analytics data

4 Immutable data store for photos, videos, etc

5 Why Hive?

Agenda

Four major types of storage systems
▪  Online Transaction Processing Databases (OLTP)

▪  The Facebook Social Graph

▪  Semi-online Lightweight Transaction Processing Databases (SLTP)

▪  Facebook Messages and Facebook Time Series

▪  Immutable DataStore

▪  Photos, videos, etc

▪  Analytics DataStore

▪  Data Warehouse, Logs storage

Size and Scale of Databases
Total Size Technology Bottlenecks

Facebook Graph

Single digit petabytes

MySQL and TAO

Random read IOPS

Facebook
Messages and

Time Series
Data

Tens of petabytes

HBase and HDFS

Write IOPS and

storage capacity

Facebook
Photos

Hundreds of

petabytes

Haystack

storage capacity

Data
Warehouse

Hundreds of

petabytes

Hive, HDFS and

Hadoop

storage capacity

Characteristics
Query

Latency
Consistency Durability

Facebook

Graph

 < few

milliseconds

quickly

consistent
across data

centers

No data loss

Facebook
Messages
and Time

Series Data

< 100 millisec

consistent

within a data
center

No data loss

Facebook
Photos

< 100 millisec

immutable

No data loss

Data
Warehouse

< 1 min

not consistent

across data
centers

No silent data

loss

Facebook Graph: Objects and Associations

Objects & Associations

Data model

6205972929
(story)

8636146
(user)

604191769
(user)

name: Barack Obama
birthday: 08/04/1961
website: http://…
verified: 1
…

likes

fan

friend

admin

liked by

18429207554
(page)

friend

Facebook Social Graph: TAO and MySQL
An OLTP workload:

▪  Uneven read heavy workload

▪  Huge working set with creation-time locality

▪  Highly interconnected data

▪  Constantly evolving

▪  As consistent as possible

Data model
Objects & Associations

▪  Object -> unique 64 bit ID plus a typed dictionary

▪  (id) -> (otype, (key -> value)*)

▪  ID 6815841748 -> {‘type’: page, ‘name’: “Barack Obama”, … }

▪  Association -> typed directed edge between 2 IDs

▪  (id1, atype, id2) -> (time, (key -> value)*)

▪  (8636146, RSVP, 130855887032173) -> (1327719600, {‘response’: ‘YES’})

▪  Association lists

▪  (id1, atype) -> all assocs with given id1, atype in desc order by time

Cache & Storage
Architecture

TAO Storage Cache
MySQL Storage

Web servers

Sharding

▪  Object ids and Assoc id1s are mapped to shard ids

Architecture

s1 s3
s5

s2 s6

s4 s7
s8

TAO Cache

db2 db4

MySQL Storage

db1 db3
db8

 db7

db5 db6

Web Servers

Workload

▪  Read-heavy workload

▪  Significant range queries

▪  LinkBench benchmark SIGMOD 2013 paper

▪  http://www.github.com/facebook/linkbench

▪  Real distribution of associations and access patterns

Messages & Time Series Database
 SLTP workload

Facebook Messages

Emails Chats SMS Messages

Why we chose HBase
▪  High write throughput

▪  Horizontal scalability

▪  Automatic Failover

▪  Strong consistency within a data center

▪  Benefits of HDFS : Fault tolerant, scalable, Map-Reduce toolset,

▪  Why is this SLTP?

▪  Semi-online: Queries run even if part of the database is offline

▪  Lightweight Transactions: single row transactions

▪  Storage capacity bound rather than iops or cpu bound

What we store in HBase
▪  Small messages

▪  Message metadata (thread/message indices)

▪  Search index

▪  Large attachments stored in Haystack (photo store)

Size and scale of Messages Database
▪  6 Billion messages/day

▪  74 Billion operations/day

▪  At peak: 1.5 million operations/sec

▪  55% read, 45% write operations

▪  Average write operation inserts 16 records

▪  All data is lzo compressed

▪  Growing at 8 TB/day

Haystack: The Photo Store

Facebook Photo DataStore
2009 2012

Total Size 15 billion photos
1.5 Petabyte

hundred petabytes

Upload Rate

30 million photos/day

3 TB/day

300 million photos/day

30 TB/day

Serving Rate

555K images/sec

Haystack based Design

Browser

Web
Server

CDN

Haystack
Directory

Haystack Store

Haystack
Cache

Hive Analytics Warehouse

www.facebook.com

User tags
a photo

Log line generated:
<user_id, photo_id>

Scribe Log Storage
(HDFS) Log line reaches

Scribeh (10s)

copier/loader
Hive Warehouse

Log line reaches
warehouse (15 min)

MySQL
DB

Scrapes
User info reaches
Warehouse (1day)

nocron
Periodic Analysis (HIVE)

Daily report on count of
photo tags by country (1day)

hipal
Adhoc Analysis
(HIVE)

Count photos tagged by
females age 20-25 yesterday

Life of a photo tag in Hadoop/Hive storage

Count users tagging photos
in the last hour (1min)

Realtime Analytics
(HBASE)

puma

Analytics Data Growth(last 4 years)

Facebook
Users

Queries/Day
Scribe Data/

Day
Nodes in

warehouse
Size (Total)

Growth 14X 60X 250X 260X 2500X

Why use Hive instead of a Parallel DBMS?
▪  Stonebraker/DeWitt from the DBMS community:

▪  Quote “major step backwards”

▪  Published benchmark results which show that Hive is not as performant
as a traditional DBMS

▪  http://database.cs.brown.edu/projects/mapreduce-vs-dbms/

What is BigData? Prospecting for Gold..
▪  “Finding Gold in the wild-west”

▪  A platform for huge data-experiments

▪  A majority of queries are searching
for a single gold nugget

▪  Great advantage in keeping all data in
one queryable system

▪  No structure to data, specify
structure at query time

How to measure performance
▪  Traditional database systems:

▪  Latency of queries

▪  Big Data systems:

▪  How much data can we store and
query? (the ‘Big’ in BigData)

▪  How much data can we query in
parallel?

▪  What is the value of this system?

Measure Cost of Storage
▪  Distributed Network Encoding of data

▪  Encoding is better than replication

▪  Use algorithms that minimize network
transfer for data repair

▪  Tradeoff cpu for storage & network

▪  Remember lineage of data, e.g. record
query that created it

▪  If data is not accessed for sometime,
delete it

▪  If a query occurs, recompute the data
using query lineage

Measure Network Encoding
Start the same: triplicate every
data block (storage overhead=3)

Background encoding
▪  Combine third replica of blocks from

a single file to create parity block

▪  Remove third replica (storage
overhead = 2)

▪  Reed Solomon encoding for much
older files (storage overhead = 1.4)

A

A B

B

A+B+C

A B

http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html

C

C

C

A file with three blocks A, B and C
(XOR Encoding)

Measuring Data Discovery: Crowd Sourcing

▪  There are 50K tables in a single
warehouse

▪  Users are Data Adminstrators
themselves

▪  Questions about a table are
directed to users of that table

▪  Automatic query lineage tools

Fault Tolerance and Elasticity

▪  Commodity machines

▪  Faults are the norm

▪  Anomalous behavior rather
than complete failures

▪  10% of machines are always
50% slower than the others

Measuring Fault Tolerance and Elasticity

▪  Fault tolerance is a must

▪  Continuously kill machines
during benchmarking

▪  Slow down 10% of machine
during benchmark

▪  Elasticity is necessary

▪  Add/remove new machines
during benchmarking

Why use Hive instead of a Parallel DBMS?
▪  Stonebraker/DeWitt from the DBMS community:

▪  Quote “Hadoop is a major step backwards”

▪  Published benchmark results which show that Hadoop/Hive is not as
performant as a traditional DBMS

▪  http://database.cs.brown.edu/projects/mapreduce-vs-dbms/

▪  Hive query is 50 times slower than DBMS query

▪ Conclusion: Facebook’s 4000 node cluster (100PB) can
be replaced by a 20 node DBMS cluster

▪ What is wrong with the above conclusion?

Hive/Hadoop instead of Parallel DBMS?

▪  Dr Stonebraker’s proposal would put 5 PB per node on DBMS

▪  What will be the io throughput of that system? Abysmal

▪  How many concurrent queries can it support? Certainly not 100K
concurrent clients

▪  Query latency is not the only metric to make a conclusion

▪  Hive/Hadoop is very very slow

▪  Hive/Hadoop needs to be fixed to reduce query latency

▪  But an existing DBMS cannot replace Hive/Hadoop

Presto: A Distributed SQL Engine

▪  Low Latency, interactive usage

▪  Bypasses Map/Reduce

▪  Processes Hive/Hadoop data but has pluggable backends

▪  Will be open sourced soon

▪  Scale

▪  30K daily queries, 300 TB scanned daily

▪  Growing fast

Future Challenges

New trends in storage software
▪  Analytics Data

▪  Streaming queries, low latency queries

▪  Cold Storage – very low $/GB

▪  OLTP Data

▪  One size does not fit all: need specialized solutions

▪  disk, flash, disk+flash

▪  write heavy, point lookups, range scans

▪  iops bound, storage bandwidth bound, memory bound

Questions?
dhruba@fb.com

http://hadoopblog.blogspot.com/

