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Four major types of storage systems 
▪  Online Transaction Processing Databases (OLTP) 

▪  The Facebook Social Graph 

▪  Semi-online Lightweight Transaction Processing Databases (SLTP) 

▪  Facebook Messages  and Facebook Time Series  

▪  Immutable DataStore 

▪  Photos, videos, etc 

▪  Analytics DataStore 

▪  Data Warehouse, Logs storage 

 



Size and Scale of Databases 
Total Size Technology Bottlenecks 

 
Facebook Graph 

 
Single digit petabytes 

 
MySQL and TAO 

 
Random read IOPS 

Facebook 
Messages and 

Time Series 
Data 

 
 

Tens of petabytes 

 
 

HBase and HDFS 

 
Write IOPS and 

storage capacity 

Facebook 
Photos 

 
Hundreds  of 

petabytes 

 
Haystack 

 
storage capacity 

Data 
Warehouse 

 
Hundreds of 

petabytes 

 
Hive, HDFS and 

Hadoop 

 
storage capacity 



Characteristics 
Query 

Latency 
Consistency Durability 

 
Facebook 

Graph 

 
 < few 

milliseconds 

 
quickly 

consistent 
across data 

centers 

 
No data loss 

Facebook 
Messages 
and Time 

Series Data 

 
 

< 100 millisec 

 
consistent 

within a data 
center 

 
No data loss 

Facebook 
Photos 

 
< 100 millisec 

 
immutable 

 
No data loss 

Data 
Warehouse 

 
< 1 min 

 
not consistent 

across data 
centers 

 
No silent data 

loss 



Facebook Graph: Objects and Associations 



Objects & Associations 

Data model 

6205972929 
(story) 

8636146 
(user) 

604191769 
(user) 

name: Barack Obama 
birthday: 08/04/1961 
website: http://… 
verified: 1 
… 

likes 

fan 

friend 

admin 

liked by 

18429207554 
(page) 

friend 



Facebook Social Graph: TAO and MySQL 
An OLTP workload: 

▪  Uneven read heavy workload 

▪  Huge working set with creation-time locality 

▪  Highly interconnected data 

▪  Constantly evolving 

▪  As consistent as possible 

 



Data model 
Objects & Associations 

▪  Object -> unique 64 bit ID plus a typed dictionary 

▪  (id) -> (otype, (key -> value)* ) 

▪  ID 6815841748 -> {‘type’: page, ‘name’: “Barack Obama”, … } 

▪  Association -> typed directed edge between 2 IDs 

▪  (id1, atype, id2) -> (time, (key -> value)* ) 

▪  (8636146, RSVP, 130855887032173) -> (1327719600, {‘response’: ‘YES’}) 

▪  Association lists 

▪  (id1, atype) -> all assocs with given id1, atype in desc order by time 



Cache & Storage 
Architecture 

TAO Storage Cache 
MySQL Storage 

Web servers 



Sharding 

▪  Object ids and Assoc id1s are mapped to shard ids 

Architecture 

 
s1 s3 
s5 

 
s2 s6 

 
s4 s7 
s8 

TAO Cache 

db2 db4 

MySQL Storage 

db1 db3 
db8 

   db7 

db5 db6 

Web Servers 



Workload 

▪  Read-heavy workload 

▪  Significant range queries 

▪  LinkBench benchmark SIGMOD 2013 paper 

▪  http://www.github.com/facebook/linkbench 

▪  Real distribution of associations and access patterns 



Messages & Time Series Database 
 SLTP workload 



Facebook Messages 

Emails Chats SMS Messages 



Why we chose HBase 
▪  High write throughput 

▪  Horizontal scalability 

▪  Automatic Failover 

▪  Strong consistency within a data center 

▪  Benefits of HDFS : Fault tolerant,  scalable, Map-Reduce toolset,  

▪  Why is this SLTP? 

▪  Semi-online: Queries run even if part of the database is offline 

▪  Lightweight Transactions: single row transactions 

▪  Storage capacity bound rather than iops or cpu bound 



What we store in  HBase 
▪  Small messages 

▪  Message metadata (thread/message indices) 

▪  Search index 

▪  Large attachments stored in Haystack (photo store) 



Size and scale of Messages Database 
▪  6 Billion messages/day 

▪  74 Billion operations/day 

▪  At peak: 1.5 million operations/sec 

▪  55% read, 45% write operations 

▪  Average write operation inserts 16 records 

▪  All data is lzo compressed 

▪  Growing at 8 TB/day 



Haystack: The Photo Store 



Facebook Photo DataStore 
2009 2012 

Total Size 15 billion photos 
1.5 Petabyte 

 
hundred petabytes 

 
Upload Rate 

 
30 million photos/day 

3 TB/day 

 
300 million photos/day 

30 TB/day 

 
Serving Rate 

 
555K  images/sec 



Haystack based Design 

Browser 

Web 
Server 

 
CDN 

 

Haystack 
Directory 

Haystack Store 

Haystack 
Cache 



Hive Analytics Warehouse 



www.facebook.com 

User tags  
a photo 

Log line generated: 
<user_id, photo_id> 

Scribe Log Storage 
(HDFS) Log line reaches  

Scribeh (10s) 

copier/loader 
Hive Warehouse 

Log line reaches 
warehouse (15 min) 

MySQL 
DB 

Scrapes 
User info reaches 
Warehouse (1day) 

nocron 
Periodic Analysis (HIVE) 

Daily report on count of  
photo tags by country (1day) 

hipal 
Adhoc Analysis 
(HIVE) 

Count photos tagged by  
females age 20-25 yesterday 

Life of a photo tag in Hadoop/Hive storage 

Count users tagging photos 
in the last hour (1min) 

Realtime Analytics 
(HBASE) 

puma 



Analytics Data Growth(last 4 years) 

Facebook 
Users 

Queries/Day 
Scribe Data/

Day 
Nodes in 

warehouse 
Size (Total) 

Growth 14X 60X 250X 260X 2500X 



Why use Hive instead of a Parallel DBMS? 
▪  Stonebraker/DeWitt from the DBMS community: 

▪  Quote “major step backwards” 

▪  Published benchmark results which show that Hive is not as performant 
as a traditional DBMS 

▪  http://database.cs.brown.edu/projects/mapreduce-vs-dbms/ 



What is BigData? Prospecting for Gold.. 
▪  “Finding Gold in the wild-west” 

▪  A platform for huge data-experiments 

▪  A majority of queries are searching 
for a single gold nugget 

▪  Great advantage in keeping all data in 
one queryable system 

▪  No structure to data, specify 
structure at query time 



How to measure performance 
▪  Traditional database systems: 

▪  Latency of queries 

▪  Big Data systems: 

▪  How much data can we store and 
query? (the ‘Big’ in BigData) 

▪  How much data can we query in 
parallel? 

▪  What is the value of this system? 



Measure Cost of Storage 
▪  Distributed Network Encoding of data 

▪  Encoding is better than replication  

▪  Use algorithms that  minimize network 
transfer for data repair 

▪  Tradeoff cpu for storage & network 

▪  Remember lineage of data, e.g. record 
query that created it 

▪  If data is not accessed for sometime, 
delete it 

▪  If a query occurs, recompute the data 
using query lineage 



Measure Network Encoding 
Start the same: triplicate every 
data block (storage overhead=3) 

Background encoding 
▪  Combine third replica of blocks from 

a single file to create parity block 

▪  Remove third replica (storage 
overhead = 2) 

▪  Reed Solomon encoding for much 
older files (storage overhead = 1.4) 

A 

A B 

B 

A+B+C 

A B 

http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html 

C 

C 

C 

A file with three blocks A, B and C 
(XOR Encoding) 



Measuring Data Discovery: Crowd Sourcing 

▪  There are 50K tables in a single 
warehouse 

▪  Users are Data Adminstrators 
themselves  

▪  Questions about a table are 
directed to users of that table 

▪  Automatic query lineage tools 



Fault Tolerance and Elasticity 
 

▪  Commodity machines 

▪  Faults are the norm 

▪  Anomalous behavior rather 
than complete failures 

▪  10% of machines are always 
50% slower than the others 



Measuring Fault Tolerance and Elasticity 
 

▪  Fault tolerance is a must 

▪  Continuously kill machines 
during benchmarking 

▪  Slow down 10% of machine 
during benchmark 

▪  Elasticity is necessary 

▪  Add/remove new machines 
during benchmarking  



Why use Hive instead of a Parallel DBMS? 
▪  Stonebraker/DeWitt from the DBMS community: 

▪  Quote “Hadoop is a major step backwards” 

▪  Published benchmark results which show that Hadoop/Hive is not as 
performant as a traditional DBMS 

▪  http://database.cs.brown.edu/projects/mapreduce-vs-dbms/ 

▪  Hive query is 50 times slower than DBMS query 

▪ Conclusion: Facebook’s 4000 node cluster (100PB) can 
be replaced by a 20 node DBMS cluster 

▪ What is wrong with the above conclusion? 



Hive/Hadoop instead of Parallel DBMS? 

▪  Dr Stonebraker’s proposal would put 5 PB per node on DBMS 

▪  What will be the io throughput of that system? Abysmal 

▪  How many concurrent queries can it support?  Certainly not 100K 
concurrent clients 

▪  Query latency is not the only metric to make a conclusion 

▪  Hive/Hadoop is very very slow 

▪  Hive/Hadoop needs to be fixed to reduce query latency 

▪  But an existing DBMS cannot replace Hive/Hadoop  



Presto: A Distributed SQL Engine 

▪  Low Latency, interactive usage 

▪  Bypasses Map/Reduce 

▪  Processes Hive/Hadoop data but has pluggable backends 

▪  Will be open sourced soon 

▪  Scale 

▪  30K daily queries, 300 TB scanned daily 

▪  Growing fast 



Future Challenges 
 



New trends in storage software 
▪  Analytics Data 

▪  Streaming queries, low latency queries 

▪  Cold Storage – very low $/GB 

▪  OLTP Data 

▪  One size does not fit all: need specialized solutions 

▪  disk, flash, disk+flash 

▪  write heavy, point lookups, range scans  

▪  iops bound, storage bandwidth bound, memory bound 



Questions? 
dhruba@fb.com 

 
http://hadoopblog.blogspot.com/ 


